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Abstract
We extend the Mason–Newman Lax pair for the elliptic complex Monge–
Ampère equation so that this equation itself emerges as an algebraic
consequence. We regard the function in the extended Lax equations as a
complex potential. Their differential compatibility condition coincides with
the determining equation for the symmetries of the complex Monge–Ampère
equation. We shall identify the real and imaginary parts of the potential, which
we call partner symmetries, with the translational and dilatational symmetry
characteristics, respectively. Then we choose the dilatational symmetry
characteristic as the new unknown replacing the Kähler potential. This directly
leads to a Legendre transformation. Studying the integrability conditions
of the Legendre-transformed system we arrive at a set of linear equations
satisfied by a single real potential. This enables us to construct non-invariant
solutions of the Legendre transform of the complex Monge–Ampère equation.
Using these solutions we obtained explicit Legendre-transformed hyper-Kähler
metrics with a anti-self-dual Riemann curvature 2-form that admit no Killing
vectors. They satisfy the Einstein field equations with Euclidean signature.
We give the detailed derivation of the solution announced earlier and present
a new solution with an added parameter. We compare our method of partner
symmetries for finding non-invariant solutions to that of Dunajski and Mason
who use ‘hidden’ symmetries for the same purpose.
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1. Introduction

In this paper, we shall present a method for finding non-invariant solutions of the elliptic
complex Monge–Ampère equation, hereafter to be referred to as CMA2,

u11̄u22̄ − u12̄u1̄2 = 1 (1.1)

using its symmetries in a non-standard way. This has application to important problems in
physics and mathematics, in particular the instanton solutions of the Einstein field equations.
They are described by four-dimensional Kähler metrics

ds2 = uik̄ dzi dz̄k (1.2)

where summation over the two values of both unbarred and barred indices is understood and
subscripts denote partial derivatives. If the Kähler potential satisfies the elliptic complex
Monge–Ampère equation, then the metric satisfies the vacuum Einstein field equations with
Euclidean signature. We shall be interested in non-invariant solutions of CMA2 which can be
used to construct hyper-Kähler metrics without any Killing vectors. Among them is the K3
surface of Kummer which is the most important gravitational instanton [1].

Recently we suggested that group foliation can serve as a general method for finding non-
invariant solutions of nonlinear partial differential equations [2, 3]. Historically this method
goes back to the works of Lie [4] and Vessiot [5], see also Ovsiannikov [6] for a modern
exposition. For CMA2 group foliation was constructed in [2] but due to the complexity of the
resolving equations non-invariant solutions have not yet been obtained in this way.

Therefore, in this paper we adopt a different approach which turned out to be fruitful
specifically for CMA2 which we shall call the method of partner symmetries, i.e. pairs of
symmetries related by extended Lax equations. Using this method we obtain non-invariant
solutions of the Legendre transform of (1.1). The earlier version of it was published in [7]
where we derived linear partial differential equations for a class of non-invariant solutions of
the hyperbolic CMA2. The use of symmetries here is unlike their standard use in symmetry
reduction [8] which leads to invariant solutions.

We start with the Lax equations [9, 10] appropriate to (1.1) for a nonlocal complex
potential variable �. However, the commutator of the Lax operators does not reproduce
CMA2 itself, but only its differential consequences. In section 2 we supplement the Lax pair
with another pair of linear equations so that in the extended linear system CMA2 becomes
an algebraic consequence. The crucial observation that follows is that this extended system
has compatibility conditions which coincide with the determining equation for symmetries
of CMA2. The complex potential � will therefore be constructed from the symmetry
characteristics [11] of CMA2 which are inter-related by the extended Lax equations for
real potentials given in section 3.

For the real part ϕ of the complex potential we shall use the translational symmetry of
CMA2 and the dilatational symmetry for its imaginary part ψ . In order to finally arrive at
linear equations, having in mind that symmetry characteristics satisfy linear equations, we
choose ψ as a new unknown instead of u which implies a Legendre transformation. This is
given in section 4.

As a result we arrive at an over-determined set of second-order partial differential equations
for the Legendre transform ψ of the unknown u. In section 5 we discuss its second- and third-
order differential compatibility conditions.

In section 6 we integrate the third-order differential compatibility conditions of this system
and arrive at six second-order equations satisfied by ψ with coefficients dependent on ϕ that has
no compatibility conditions. In section 7 we choose the translational symmetry characteristic
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of ϕ. This leads to linear partial differential equations with constant coefficients for v = e−ψ .
We obtain the general solution of these linear equations.

This solution is related to a particular solution set of the original equation (1.1) by
a Legendre transformation and therefore determines a particular set of solutions of the
Euclidean Einstein equations with anti-self-dual Riemann curvature 2-form. We shall not
need to reconstruct the corresponding solution set of the original CMA2 equation (1.1) by
means of the inverse Legendre transformation, but instead make the Legendre transformation
on the metric (1.2) itself. In section 8 we present the metric. Since the solution is obviously
non-invariant, the corresponding metric has no Killing vectors. We discuss some properties
of the metric. In particular, we show that it saturates Hitchin’s bound [12] between the Euler
number and Hirzebruch signature which means that if the manifold with our metric can be
identified as a compact manifold it will coincide with the K3 surface, or a surface whose
universal covering is K3. A preliminary version of this research with a less general set of
solutions can be found in [13] and the announcement of those results is published in [14].

We discuss possible curvature singularities of our metric in section 9. We find that they
coincide with those of the metric. We derive an additional first-order partial differential
equation that the potential v must satisfy for the existence of singularities. We give the general
solution for v that gives rise to singularities in the metric and curvature.

Finally, in section 10 we establish the relationship between our approach of partner
symmetries to that developed recently by Dunajski and Mason [15, 16] who suggest invariance
with respect to ‘hidden’ symmetries as a method for obtaining non-invariant solutions and apply
it to Plebanski’s second heavenly equation. For comparison, we construct nonlocal recursion
operators for symmetries of CMA2 and show that partnership between local symmetries of
this equation is equivalent to the invariance of solutions of CMA2 with respect to nonlocal
symmetries of a very special form such that CMA2 itself becomes a consequence of this
invariance. The idea that invariance with respect to nonlocal ‘potential’ symmetries can give
rise to non-invariant solutions of partial differential equations has appeared for the first time
in the papers of Bluman and Kumei (see [17] and references therein).

2. Complex potential

In our approach we start with the Lax equations discovered by Mason and Newman [9, 10]

�1 = u11̄�2̄ − u12̄�1̄ �2 = u21̄�2̄ − u22̄�1̄ (2.1)

where � is a complex-valued function of its arguments {zi, z̄k} and we skip the spectral
parameter as unnecessary for our purposes. The commutator of the corresponding Lax pair

[∂1 + u12̄∂1̄ − u11̄∂2̄, ∂2 + u22̄∂1̄ − u21̄∂2̄] = 0

does not reproduce CMA2 but only its differential consequences resulting in the equation

u11̄u22̄ − u12̄u1̄2 = k

where k is an arbitrary real constant with only three inequivalent choices k = 1, k = −1 and
k = 0. Hence this Lax pair does not distinguish between elliptic, hyperbolic or homogeneous
CMA2 which is certainly its drawback.

Therefore, we supplement the Lax equations (2.1) with two more linear equations

�1̄ = u21̄�1 − u11̄�2 �2̄ = u22̄�1 − u12̄�2 (2.2)

such that CMA2 itself emerges as an algebraic compatibility condition of any three of these
equations and also of the complex conjugate equations for �̄. Alternatively, if we impose
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CMA2 independently, then the additional pair of equations (2.2) follows from the original
system (2.1) and CMA2.

The differential compatibility condition of equations (2.1) taken in the form (�1)2 =
(�2)1 and a similar condition for the complex conjugate system have the form of the
determining equations for symmetry characteristics of CMA2

�(�) = 0 �(�̄) = 0 (2.3)

where � is the real linear differential operator

� = u22̄D1D1̄ + u11̄D2D2̄ − u21̄D1D2̄ − u12̄D2D1̄ (2.4)

and similarly for the system (2.2) and its complex conjugate system. Here Di are operators of
total differentiation with respect to zi .

The crucial consequence of (2.3) that we shall exploit in this paper is that the complex
potential � will be constructed from the symmetry characteristics of CMA2.

On the other hand, if we consider the second-order derivatives of the Kähler potential as
unknowns in the system (2.1), (2.2), then its matrix has rank 3. Thus we may solve for the
three derivatives

u11̄ = �1�1̄

�2�2̄
u22̄ +

�1

�2̄
− �1̄

�2 (2.5)
u12̄ = �1

�2
u22̄ − �2̄

�2
u21̄ = �1̄

�2̄
u22̄ +

�2

�2̄

and these expressions satisfy CMA2 (1.1) identically. Substituting the expressions (2.5) into
the equations complex conjugate to (2.1), (2.2) we obtain four equations with the only one
unknown u22̄ which give four different expressions for the same unknown. We need all these
expressions to coincide which leads to a single algebraic compatibility condition

�1�̄2 − �2�̄1 = �̄1̄�2̄ − �̄2̄�1̄ (2.6)

of the original linear system and its complex conjugate.
Finally, we find that the metric coefficients in (1.2) can be expressed through the complex

potential

uik̄ = �i�̄k̄ + �̄i�k̄

�1�̄2 − �̄1�2
(2.7)

which identically satisfy CMA2 and reality conditions for u on account of (2.6). We can use
(2.7) in the determining equations (2.3) for symmetries of CMA2 in order to express them
solely through the potentials � and �̄

(�2�̄2̄ + �̄2�2̄)�11̄ + (�1�̄1̄ + �̄1�1̄)�22̄ − (�2�̄1̄ + �̄2�1̄)�12̄

− (�1�̄2̄ + �̄1�2̄)�21̄ = 0 (2.8)

and the complex conjugate equation. This is a system of coupled second-order quasi-linear
equations. If we consider the equations (2.1), (2.2) and their complex conjugates as Bäcklund
transformations, then the system of equations (2.6), (2.8) and the complex conjugate of the
latter equation containing only potentials �, �̄ form the Bäcklund transform of the complex
Monge–Ampère equation [7].

3. Partner symmetries

We shall work with real symmetry characteristics of CMA2 which are the real and imaginary
parts of the potential �. So we set

� = ϕ + iψ



Partner symmetries of the complex Monge–Ampère equation 10027

whereby (2.1), (2.2) and their complex conjugates become

ϕ1 = i(u11̄ψ2̄ − u12̄ψ1̄) ϕ2 = i(u21̄ψ2̄ − u22̄ψ1̄) (3.1)

and

ψ1 = −i(u11̄ϕ2̄ − u12̄ϕ1̄) ψ2 = −i(u21̄ϕ2̄ − u22̄ϕ1̄) (3.2)

together with their complex conjugate equations. CMA2 is again an algebraic consequence
of any three equations chosen from (3.1) and (3.2) while the system (3.2) follows from (3.1)
plus CMA2.

The differential compatibility conditions (ϕ1)2 = (ϕ2)1 and similarly for ψ are �(ψ) = 0
and �(ϕ) = 0 which again shows that ϕ and ψ are symmetry characteristics of CMA2. As a
consequence they will satisfy the nonlinear first-order compatibility condition

ψ1ϕ2 − ϕ1ψ2 = ϕ1̄ψ2̄ − ψ1̄ϕ2̄ (3.3)

which is (2.6). We shall call any pair of symmetries ϕ and ψ related by equations (3.1) and
(3.2) partner symmetries of CMA2.

4. Legendre transformation and dilatational symmetry

We start with the general symmetry generator of CMA2 [18]

X= i(�1∂2 − �2∂1 − �1̄∂2̄ + �2̄∂1̄) + C1(z
1∂1 + z̄1∂1̄ + u∂u) + iC2(z

2∂2 − z̄2∂2̄) + H∂u

where �(zi, z̄k) and H(zi, z̄k) are arbitrary solutions of the linear system

�11̄ = 0 �22̄ = 0 �12̄ = 0 �21̄ = 0

and C1 and C2 are real constants. The corresponding symmetry characteristic [11] has the
form

η̂ = i(u1�2 − u2�1 + u2̄�1̄ − u1̄�2̄) + C1(u − z1u1 − z̄1u1̄) − iC2(z
2u2 − z̄2u2̄) + H (4.1)

and ϕ, ψ can be chosen as special cases of expression (4.1). We note that the choice of ϕ and
ψ as � and H respectively, leads to the metric for flat space and hence is trivial.

In the following we shall consider in detail the simplest non-trivial case when ϕ is
identified with the symmetry characteristic independent of z1, z̄1 and u2, u2̄

ϕ = u1ω(z2) + u1̄ω̄(z̄2) + h(z2) + h̄(z̄2) (4.2)

which is a general form of such a symmetry following from (4.1). We shall find that in order
to end up with linear equations with constant coefficients ω must be a constant and without
loss of generality we may choose h as a linear function, so that (4.2) becomes

ϕ = u1 + u1̄ + ν(z2 + z̄2) (4.3)

where ν is an arbitrary real constant.
We shall choose for ψ the characteristic of the dilatational symmetry

ψ = u − z1u1 − z̄1u1̄ (4.4)

and in order to arrive at linear equations we shall not substitute (4.3), (4.4) into the systems
(3.1) and (3.2) directly. Instead, we regard ψ as a new unknown replacing the Kähler potential
u. Then we recognize in formula (4.4) a part of the Legendre transformation

ψ = u − z1u1 − z̄1u1̄ u = ψ − pψp − p̄ψp̄

z1 = −ψp z̄1 = −ψp̄ u1 = p u1̄ = p̄
(4.5)

where z2 remains unchanged and ψ and ϕ are now regarded as functions of p, p̄, z2 and z̄2.
This is therefore a partial Legendre transformation. We note that

ψppψp̄p̄ − ψ2
pp̄ �= 0 (4.6)

is the existence condition for the Legendre transformation (4.5).
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5. Legendre transform of the basic equations and their compatibility conditions

After the Legendre transformation (4.5) the system of eight basic equations (3.1), (3.2) and
their complex conjugates is linear in the second derivatives of ψ and has rank five. Hence it
can be solved with respect to five second derivatives ψpp,ψp2̄, ψ22̄, ψp̄p̄, ψp̄2 in the form

ψpp = Aψpp̄ ψp2̄ = Cψpp̄ ψ22̄ = Bψpp̄ (5.1)

together with their complex conjugates. The only remaining second derivative ψpp̄ is regarded
as parametric. In equations (5.1) the coefficients depend on the first derivatives of ϕ and ψ

A = ϕ2
p + ψ2

p + i(ϕpψ2 − ϕ2ψp)

ϕpϕp̄ + ψpψp̄

C = ϕpϕ2̄ + ψpψ2̄ + i(ϕp̄ψp − ϕpψp̄)

ϕpϕp̄ + ψpψp̄

B = ϕ2ϕ2̄ + ψ2ψ2̄ + i(ψpϕ2̄ − ϕpψ2̄ + ψ2ϕp̄ − ϕ2ψp̄)

ϕpϕp̄ + ψpψp̄

= |A|2 + |C|2 − 1

(5.2)

where we have not yet made any choice of ϕ.
It is remarkable that two more second derivatives ψp2 and ψp̄2̄ are cancelled in the

equations (5.1) which allows us to end up with linear equations.
We note that after the Legendre transformation CMA2 given by (1.1) takes the form

ψpp̄ψ22̄ − ψp2̄ψp̄2 = ψppψp̄p̄ − ψ2
pp̄ (5.3)

which is identically satisfied as a consequence of (5.1). Symmetry characteristic ϕ of CMA2

(5.3) satisfies the determining equation which is a linearization of (5.3)

ψp̄p̄ϕpp + ψppϕp̄p̄ − (2ψpp̄ + ψ22̄)ϕpp̄ + ψp̄2ϕp2̄ + ψp2̄ϕp̄2 − ψpp̄ϕ22̄ = 0

or

Āϕpp + Aϕp̄p̄ − (B + 2)ϕpp̄ + C̄ϕp2̄ + Cϕp̄2 − ϕ22̄ = 0 (5.4)

on account of equations (5.1).
The differential compatibility conditions for the system (5.1) have the form

(ψpp)2̄ = (ψp2̄)p (ψp2̄)2 = (ψ22̄)p (5.5)

and two complex conjugate conditions. They involve four third derivatives which are
determined by differentiating (5.1)

ψppp̄ = AĀp + Ap̄

1 − |A|2 ψpp̄ ψpp̄2 =
(

C̄
AĀp + Ap̄

1 − |A|2 + C̄p

)
ψpp̄ (5.6)

and their complex conjugates. For example, we differentiate the first of the equations in (5.1)
with respect to p̄, use the complex conjugate equation and derive the equation for ψppp̄ as
follows:

ψppp̄ = (ψpp)p̄ = (Aψpp̄)p̄ = A(ψp̄p̄)p + Ap̄ψpp̄

= A(Āψpp̄)p + Ap̄ψpp̄ = |A|2ψppp̄ + (AĀp + Ap̄)ψpp̄

and having determined the third derivatives in this way, we find that the compatibility conditions
(5.5) result in

ACp̄ − CAp̄ − Cp + A2̄ = 0 ĀAp + C̄Cp − Ap̄ − C2 = 0 (5.7)

together with their complex conjugates.
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6. Equations for potentials without compatibility conditions

In equation (4.2) we suggested the general form of the symmetry ϕ which has the Legendre
transform

ϕ = pω(z2) + p̄ω̄(z̄2) + h(z2) + h̄(z̄2) (6.1)

but so far we have not used it. Now we want to show that even keeping a more general form
of ϕ, our goal of arriving at linear equations with constant coefficients fixes the final choice of
ϕ as the Legendre transform of (4.3).

However, in order to make sure that ϕ will be a symmetry of the Legendre transform (5.3)
of CMA2 and to provide a symmetry between ψ and ϕ we shall impose on ϕ equations of
the same form (5.1) as for ψ . We note that our particular choice (6.1) of ϕ will satisfy these
equations identically and that this also agrees with the determining equation for symmetries
of (5.3) since then equation (5.4) becomes the identity |A|2 + |C|2 − B − 1 = 0 in (5.2). As a
consequence all our second-order compatibility conditions (5.7) are satisfied and the system
(5.1) is compatible in the sense that the equations (5.5) are identically satisfied and the same
equations for ϕ are satisfied as well.

Thus, for ψ we have the system of the second-order equations (5.1) and the third-
order equations (5.6). The coefficients of the latter equations are logarithmic derivatives of
ϕpϕp̄ + ψpψp̄, so that these equations take the form

(ψpp̄)p

ψpp̄

= AĀp + Ap̄

1 − |A|2 = (ϕpϕp̄ + ψpψp̄)p

ϕpϕp̄ + ψpψp̄

(ψpp̄)2

ψpp̄

= C̄
AĀp + Ap̄

1 − |A|2 + C̄p = (ϕpϕp̄ + ψpψp̄)2

ϕpϕp̄ + ψpψp̄

and the integrated equations become an additional second-order equation

ψpp̄ = C1(ϕpϕp̄ + ψpψp̄) (6.2)

equivalent to the third-order equations (5.6). Here C1 is a real integration constant. In the case
ϕ is not fixed, these equations hold for ϕ as well where we exchange ϕ to ψ and C1 to C2.

Hence ψ satisfies the system of six equations (5.1), (6.2)

ψpp̄ = ϕpϕp̄ + ψpψp̄

ψpp = ϕ2
p + ψ2

p + i(ϕpψ2 − ϕ2ψp)

ψp2̄ = ϕpϕ2̄ + ψpψ2̄ + i(ϕp̄ψp − ϕpψp̄)

ψ22̄ = ϕ2ϕ2̄ + ψ2ψ2̄ + i(ψpϕ2̄ − ϕpψ2̄ + ψ2ϕp̄ − ϕ2ψp̄)

(6.3)

together with two complex conjugate equations and similarly for ϕ. Here we have used (6.2) in
the system of equations (5.1) and the expressions (5.2) for the coefficients A,B and C and made
the change of notation C1ψ �→ ψ,C1ϕ �→ ϕ. The differential compatibility conditions of these
systems are identically satisfied without generating any second-, or third-order conditions.
Thus the Legendre transform of the determining equation (2.3) for symmetries of CMA2 is
also identically satisfied for ψ and ϕ together with the first-order compatibility condition (3.3).
Therefore, any ϕ and ψ which satisfy the systems (6.3) and the one obtained from (6.3) by the
exchange of ψ and ϕ form a pair of partner symmetry characteristics related to each other by
the Legendre transform of (3.1) and (3.2).



10030 A A Malykh et al

7. Linear equations and their general solution

The linearization is achieved by the logarithmic substitution

ψ = −log v (7.1)

so that the first equation in (6.3)

−vpp̄

v
+

vpvp̄

v2
= ϕpϕp̄ +

vpvp̄

v2

becomes the linear equation

vpp̄ = −ϕpϕp̄v (7.2)

because according to our choice (4.2) ϕ is independent of z1, z̄1 and u2, u2̄. Indeed if
we had admitted such dependence, then after the Legendre transformation we would have
z1 = −ψp, u2 = ψ2 so that the derivatives of ϕ in (7.2) and (6.3) would result in nonlinear
dependence on v. Furthermore, the second derivatives vp2, vp̄2̄ would enter destroying the
whole structure.

The linear equation (7.2) will have a constant coefficient if we further impose the condition
ϕp = const. That is, we choose the symmetry ϕ to be linear in p, p̄ which results in the
Legendre transform of formula (4.3)

ϕ = p + p̄ + ν(z2 + z̄2) (7.3)

where ν is an arbitrary real constant and our choice of h(z2) = νz2 in (4.2) has been made
without loss of generality. Thus, from now on we fix the choice of the potential ϕ as the
characteristic of translational symmetry (4.3) with its Legendre transform (7.3).

Then the equations (6.3) for v = e−ψ become linear with constant coefficients

vpp̄ + v = 0

vpp + v − i(v2 − νvp) = 0

vp2̄ + νv − i(vp − vp̄) = 0
v22̄ + ν2v − i[v2 − v2̄ + ν(vp − vp̄)] = 0

(7.4)

plus two complex conjugate equations.
The general solution of the linear system (7.4) in the case of the discrete spectrum has the

form

v =
∞∑

j=−∞
exp

{
2 Im

([
α2

j

(
s2
j + 1

)
+ 1

]
z2

)}{
exp[2sj Re[αj (p + νz2)]]

× Re
{
Fj exp

[
2i

[
Im(αj (p + νz2)) − 2sj Re

(
α2

j z
2
)]]}

+ exp[−2sj Re[αj (p + νz2)]] Re
{
Gj exp

[
2i

[
Im(αj (p + νz2))

+ 2sj Re
(
α2

j z
2
)]]}}

(7.5)

where αj , Fj ,Gj are arbitrary complex constants and sj = √
1 − 1/|αj |2. For a particular

example, one can take a finite sum instead of infinite series in this formula. On the other
hand we can also consider the continuous spectrum where αj should be changed to α, sj

to s =
√

1 − 1/|α|2, Fj ,Gj to F(α, ᾱ),G(α, ᾱ), respectively, and the sum in formula (7.5)
should be changed to a double integral with respect to α, ᾱ. In this way we end up with an
integral representation of the solution for v. Since the solution (7.5) explicitly depends on four
real independent variables, it is a non-invariant solution of the Legendre transform of CMA2

given by (5.3).
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For our particular purpose of constructing the metric without any Killing vectors we
have no need to reconstruct the corresponding non-invariant solution of the original field
equation (1.1), which is CMA2 itself, by the inverse Legendre transformation. Instead we
make the Legendre transformation (4.5) in the metric (1.2) itself.

8. The metric

The solution (7.5) of the linear equations (7.4) will be used in the construction of the metric
which is a Legendre transform of the metric (1.2) . For this purpose it will be convenient to
introduce a new notation for the numerators and the denominator of the coefficients A and C
in (5.2) putting A = a/c, C = b̄/c

a = v2 + v2
p − iv(v2 − νvp)

b = vp̄v2 + νv2 − iv(vp − vp̄)

c = v2 + |vp|2
(8.1)

so that the metric is given by

ds2 = 1

v2(c2 − |a|2)
[
a(c dp + b dz2)2 + ā(c dp̄ + b̄ dz̄2)2

+
1

c
(c2 + |a|2)|c dp + b dz2|2

]
+

1

v2c
(c2 − |a|2)|dz2|2 (8.2)

with the real potential v determined by (7.5). The solution (7.5) depends on four independent
variables, so that it is a non-invariant solution. The Legendre-transformed hyper-Kähler metric
(8.2) therefore has no Killing vectors. This general result is violated in only one case, if the
sum in (7.5) is restricted to only one term. We note that the metric coefficients depend
only on logarithmic derivatives of v and therefore in this special case the dependence on the
argument of the first exponential factor in (7.5) vanishes and the metric depends on only three
coordinates. This is a symmetry reduction.

Any solution for v of the form (7.5) with a minimum of two terms in the sum when
substituted into (8.1) gives us an explicit form of the metric (8.2) without any Killing vectors.

It will be useful to express the metric (8.2) in the Euclidean Newman–Penrose formalism
[19, 20]. The metric is given by

ds2 = l ⊗ l̄ + l̄ ⊗ l + m ⊗ m̄ + m̄ ⊗ m (8.3)

where

l = 1

v[c(c2 − |a|2)]1/2
[c(c dp + b dz2) + ā(c dp̄ + b̄ dz̄2)],

m = (c2 − |a|2)1/2

vc1/2
dz2

(8.4)

and the co-frame will be labelled as ωa = {l, l̄, m, m̄}.
It can be verified directly that in the Newman–Penrose frame with the metric coefficients

given by (8.1) and the potential v satisfying the linear system (7.4), the Riemann curvature
2-form is anti-self-dual

�a
b = −∗�a

b �a
b = 1

2Ra
bcdω

c ∧ ωd (8.5)

where ∗ is the Hodge star operator. Ricci-flatness follows by virtue of the first Bianchi identity.
The metric (8.2) has no Killing vectors since the potential v in the solution (7.5) depends on
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all four coordinates. Its first Chern class vanishes since Rikω
i ∧ ωk = 0. There are three real

closed 2-forms that follow from the metric (8.2)

θ0 = l ∧ l̄ − m ∧ m̄ θ+ = 1

2

(
l ∧ m̄ + l̄ ∧ m

)
θ− = 1

2i
(l ∧ m̄ − l̄ ∧ m) (8.6)

which shows that it is hyper-Kähler because the (1, 1) tensors that define the structure functions
of three almost complex structures are obtained by raising an index of the 2-forms (8.6) with
the metric [20].

We note that due to the fact that v is given by exponentials and the metric coefficients are
homogeneous of degree zero in v and its derivatives, the metric coefficients tend to constant
values asymptotically. The same is true for the Newman–Penrose tetrad scalars of the Riemann
tensor.

We shall not discuss whether or not our solution describes a compact 4-manifold. All our
analysis has been local and given a metric in a local coordinate chart as in (8.2), compactness
is always an open question. The property of compactness depends on the range of coordinates
that we may assign to the local coordinates {p, p̄, z2, z̄2}. We have not done that, but the
presence of exponentials in the metric coefficients suggests that the metric could well be made
compact by choosing a suitable domain of coordinates. Assuming compactness, by virtue
of the anti-self-dual curvature property, our solution saturates Hitchin’s bound |τ | � (2/3)χ

[12] between the Euler characteristic χ and the Hirzebruch signature τ . They are defined as
integrals of the following 4-forms over a compact manifold

χ = 1

24π2

∫
�a

b ∧ ∗�b
a τ = 1

24π2

∫
�a

b ∧ �b
a

and hence the quantity

χ +
3

2
τ = 1

24π2

∫
�a

b ∧ (∗�b
a + �b

a

) = 0

vanishes due to the anti-self-duality (8.5) of the Riemann curvature 2-form. Thus we have the
saturation of the Hitchin bound. Only K3 and surfaces whose universal covering is K3 have
this property according to Hitchin’s theorem [12].

The metric (8.2) contains an infinite number of arbitrary parameters, even arbitrary
functions of two variables in the double integral. Furthermore, it is an open question as to
whether or not for suitably chosen values of the arbitrary constants and domain of coordinates
this metric will be that of a compact manifold. This is an important issue, because of its
relevance to the metric on K3. We know from index theorems [21] that the number of
parameters in the metric for K3 is finite. Further work will possibly enable us to identify the
essential parameters in this solution that actually characterize K3.

9. Analysis of possible curvature singularities

In order to discuss singularities in the curvature scalars we will need the tetrad scalars of the
Riemann tensor in the Newman–Penrose frame (8.4). The Newman–Penrose tetrad scalars of
the Riemann tensor are too lengthy to be presented here. However, their denominators are
quite simple and the only places where curvature scalars blow up are given by

|a|2 − c2 = 0 (9.1)

which are also singularities of the metric. Using (8.1) we arrive at the following first-order
partial differential equation:

v[(vp − vp̄)2 + |v2 − νvp|2] + 2 Im
[
(v2 − νvp)

(
v2 + v2

p̄

)] = 0 (9.2)
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for possible curvature singularities. If for some v equation (9.2) is satisfied together with the
system (7.4), then the denominator of the metric is identically zero and hence such a solution
for v cannot be used for constructing the metric. From the definitions (8.1) and the singularity
condition (9.1) we note the following relations:

cp = i(b − νc) ap̄ = −i(b − νc) ap = i
a

c
(b − νc) (9.3)

b

c
− i

(vp̄

v

a

c
− vp

v

)
− ν = 0

b̄

c
− ν = c

a

(
b

c
− ν

)
(9.4)

which are used to check that Ap = Ap̄ = 0, Cp = Cp̄ = 0.
Next we express vp2 from the last equation (9.3) and check the relation

i
(
vp2 − vp̄2

a

c

)
+ v2

(
b

c
− ν

)
= 0 (9.5)

by differentiating the first of equations (9.4) with respect to z2 and use the relation (9.5). We
find (

b

c

)
2

− i
vp̄

v

(a

c

)
2

= 0 (9.6)

and differentiating this equation with respect to p, using the independence of A = a/c

and C̄ = b/c from p we prove their independence of z2, z̄2 as well by checking that
A2 = A2̄ = 0, C2 = C2̄ = 0 and hence A and C are constants

A = a

c
= λ = const C̄ = b

c
= µ = const

λ̄ = 1

λ
µ̄ = µ + (λ − 1)ν

λ

(9.7)

which serve as the definition of λ and µ. From the definitions of a and c it follows that

v(c − a) + ivp(b − νc) − i(v2 − νvp)c = 0

which due to (9.7) becomes

v2 = µvp + i(λ − 1)v (9.8)

and relation (9.5) takes the form

vp = λvp̄ + i(µ − ν)v. (9.9)

Compatibility conditions (vp)2 = (v2)p and (vp)2̄ = (v2̄)p of (9.9), (9.8) and the complex
conjugate to (9.8) are identically satisfied.

Consecutive integration of these three first-order equations gives the solution

v = exp

{
i(λ − 1)

(
z2 +

1

λ
z̄2

)
+ i(µ − ν)ξ

}
H(η)

ξ = p + µz2 η = λξ + ξ̄

(9.10)

Due to the first of the second-order equations (7.4) the function H(η) satisfies the following
ordinary differential equation:

λH ′′ + i(µ − ν)H ′ + H = 0 (9.11)

with the general solution

H = C1 exp
{ i

2λ

[−(µ − ν) +
√

(µ − ν)2 + 4λ
]
η
}

+ C̄1 exp
{
− i

2λ

[
µ − ν +

√
(µ − ν)2 + 4λ

]
η
}

(9.12)
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where C1, C̄1 are arbitrary constants and the second constant was chosen as C̄1 to satisfy the
reality condition

ei(µ−ν)ξH = e−i (µ−ν)

λ
ξ̄ H̄

for the solution v defined by (9.10). In the notation

λ = −α

ᾱ
µ = ν − 2 iαs s =

√
1 − 1

|α|2 C1 = F̄

the singular solution (9.10) with H defined by (9.12) finally becomes

v = Re{F exp{α(s + 1)p + ᾱ(s − 1)p̄ − i[α2(s + 1)2 + 1

+ iνα(s + 1)]z2 + i[ᾱ2(s − 1)2 + 1 − iνᾱ(s − 1)]z̄2}} (9.13)

where F is an arbitrary complex constant. The expression (9.13) for v is the general solution of
the system of linear second-order equations (7.4) supplemented by the first-order singularity
condition (9.2). It is obvious that the singular solution (9.13) is a very special case of the
general solution (7.5) which is obtained if we restrict ourselves to only one term in the sum
(7.5) and keep only one complex constant F putting the other G equal to zero. This solution
is automatically avoided since the minimum number of terms in the sum (7.5) is two in order
not to have symmetry reduction.

Thus, we have proved that any solution (7.5) of the linear system (7.4) which does not
coincide with (9.13) can be used to construct the explicit expression for metric (8.2).

10. Recursion operators and invariance with respect to nonlocal symmetries

In this section, we establish the relationship between our use of partner symmetries for
obtaining non-invariant solutions of CMA2 and the method of Dunajski and Mason [15, 16].
Dunajski and Mason have suggested a general approach for finding non-invariant solutions as
invariant solutions with respect to ‘hidden’ symmetries and applied it to the second heavenly
equation of Plebanski.

We introduce a pair of linear differential operators

L1 = i(u12̄D1̄ − u11̄D2̄) L2 = i(u22̄D1̄ − u21̄D2̄) (10.1)

plus their complex conjugates. These operators commute as a consequence of CMA2,
alternatively [L1, L2] = 0 implies differential consequences of CMA2. In terms of these
operators the relations (3.1) and (3.2) between potentials take the form

ϕ1 = −L1ψ ϕ2 = −L2ψ

ψ1 = L1ϕ ψ2 = L2ϕ
(10.2)

The determining equation �(ϕ) = 0 for symmetries of CMA2 with the operator � given by
(2.4) can be expressed in terms of the operators (10.1)

L2D1ϕ = L1D2ϕ ⇐⇒ D1L2ϕ = D2L1ϕ (10.3)

Equation (10.3) is a conservation law which implies the existence of a potential ψ for the
symmetry ϕ such that

D1ψ = L1ϕ D2ψ = L2ϕ (10.4)

and we note that ψ satisfies the same equation �(ψ) = 0 taken in the form (10.3)

D1L2ψ = D2L1ψ �⇒ L2D1ψ = L1D2ψ �⇒ L2L1ϕ = L1L2ϕ
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where we have used equations (10.4). The last equation is satisfied identically since the
operators L1 and L2 commute on the solution manifold of CMA2.

Hence we find that if ϕ is a symmetry of CMA2 then ψ defined by

ψ = D−1
1 L1ϕ = D−1

2 L2ϕ (10.5)

is also a symmetry. Therefore, the integro-differential operators

R1 = D−1
1 L1 R2 = D−1

2 L2 (10.6)

are recursion operators for symmetries of CMA2 defined on the subspace of symmetries ϕ

satisfying the relation R1ϕ = R2ϕ.
The relations (10.2) between the potentials become

ϕ = −R1ψ ϕ = −R2ψ ψ = R1ϕ ψ = R2ϕ (10.7)

so that comparison of (10.5) with the two latter formulae in (10.7) shows that our second
symmetry ψ which is a partner for ϕ coincides with the potential for ϕ. Hence the recursion
operators Ri are defined on the subspace of partner symmetries of CMA2.

The operators Ri are recursion operators for the whole space of symmetries of CMA2

if we define the inverse integral operators D−1
i by specifying the limits of integration. The

relations D−1
i Di = 1 for i = 1, 2 will be satisfied if we define D−1

i = ∫ zi

a
dzi and impose the

boundary conditions f (a) = 0 for all f in the domain of definition of D−1
i . In particular, if

a = ∞ we need to restrict ourselves to the space of functions decreasing to zero when zi tend
to infinity. Then we have

D−1
i Dif =

∫ zi

a

Di(f (zi)) dzi = f (zi)

for all such f and hence D−1
i Di = 1.

Recursion operators Ri should commute with the operator (2.4) of the determining
equation for symmetries of CMA2 on the space of its solutions on account of CMA2.
Calculating these commutators we obtain

[Ri,�] = [
Li,D

−1
i

]
�

where

� = i(D2L1 − D1L2)

coincides with the operator (2.4). Hence on the space of solutions of the equation �(ϕ) = 0
we have the required property [Ri,�]ϕ = 0.

If we choose for ϕ and ψ any local symmetries of CMA2, then the following expressions
are characteristics of nonlocal symmetries

η̂1 = R1ψ + ϕ η̂2 = R2ψ + ϕ η̂3 = R1ϕ − ψ η̂4 = R2ϕ − ψ (10.8)

so that the relations (10.7) of partnership between local symmetries take the form of equations
determining invariant solutions of CMA2 with respect to the nonlocal symmetries (10.8)

η̂i = 0 i = 1, 2, 3, 4 (10.9)

of a very particular type (10.8). Taking into account CMA2, only two relations out of
the system (3.1), (3.2) are independent and therefore the same is true for the invariance
conditions (10.9). Alternatively, CMA2 itself is an algebraic consequence of the invariance
conditions (10.9). We note that the definition of D−1

i so that Ri become recursion operators
on the space of all symmetries of CMA2 is not needed after we impose the condition (10.9)
because it ensures that Ri now act only on the subspace of partner symmetries.
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Thus, the starting point of our use of local partner symmetries of CMA2 is equivalent
to searching for its solutions invariant with respect to two nonlocal symmetries of a special
form (10.8) which is in the spirit of Dunajski and Mason’s treatment of Plebanski’s second
heavenly equation. Both of these approaches exploit the idea that an appropriate non-standard
use of symmetries of a nonlinear partial differential equation may result in a construction of
its non-invariant solutions. However, the use of symmetries is very different in these two
methods. The resulting linear equations are therefore also completely different.

For the sake of completeness we note that ‘hidden’ symmetries, recursion operators and
infinite hierarchies of the self-dual-gravity equations were also studied in [22, 23].

11. Conclusion

We have shown that a class of non-invariant solutions of CMA2 can be obtained by solving a
set of linear partial differential equations with constant coefficients for a single real potential.
This has enabled us to obtain explicit expressions for the Legendre transform of hyper-Kähler
metrics with anti-self-dual Riemann curvature 2-form that admit no continuous symmetries.
From the anti-self-duality property it follows that their first Chern class vanishes and the
Einstein field equations with Euclidean signature are satisfied.

We started with the extension of Mason–Newman Lax equations for the complex potential
of CMA2 and found that the equation determining the symmetry characteristics of CMA2

appeared as their integrability condition which led us to the concept of partner symmetries.
The use of partner symmetries proved to be the basic tool for finding non-invariant solutions
of CMA2 by solving linear equations.

We established the relation between our concept of partner symmetries and invariance
of solutions of CMA2 with respect to such nonlocal symmetries that CMA2 itself becomes
a consequence of this invariance. This seems to be the spirit of the idea of using ‘hidden’
symmetries for finding non-invariant solutions of the second heavenly equation suggested in
the recent work of Dunajski and Mason. However, our use of symmetries and linear equations
determining non-invariant solutions of CMA2 is completely different.

In this paper, we used the translational and dilatational symmetries of CMA2 as partner
symmetries. We plan to use other pairs of partner symmetries in a future publication in order
to obtain further classes of non-invariant solutions of CMA2 and the corresponding metrics
without continuous symmetries.
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